Các dạng toán phương trình lượng giác, phương pháp giải và bài tập trường đoản cú cơ phiên bản đến cải thiện - toán lớp 11

Sau khi làm cho quen với những hàm lượng giác thì những dạng bài xích tập về phương trình lượng giác đó là nội dung tiếp theo sau mà những em sẽ học trong công tác toán lớp 11.

Bạn đang xem: Phương pháp giải toán lượng giác


Vậy phương trình lượng giác có các dạng toán nào, cách thức giải ra sao? chúng ta cùng mày mò qua bài viết này, đồng thời vận dụng các cách thức giải này để làm các bài xích tập tự cơ bản đến cải thiện về phương trình lượng giác.

I. Lý thuyết về Phương trình lượng giác

1. Phương trình sinx = a. (1)

° |a| > 1: Phương trình (1) vô nghiệm

° |a| ≤ 1: gọi α là 1 trong cung thỏa sinα = a, khi đó phương trình (1) có những nghiệm là:

 x = α + k2π, ()

 và x = π - α + k2π, ()

- Nếu α thỏa mãn điều kiện 

*
 và sinα = a thì ta viết α = arcsina. Khi đó những nghiệm của phương trình (1) là:

 x = arcsina + k2π, ()

 và x = π - arcsina + k2π, ()

- Phương trình sinx = sinβ0 có các nghiệm là:

 x = β0 + k3600, ()

 và x = 1800 - β0 + k3600, ()

2. Phương trình cosx = a. (2)

° |a| > 1: Phương trình (2) vô nghiệm

° |a| ≤ 1: gọi α là 1 trong cung thỏa cosα = a, lúc đó phương trình (2) có những nghiệm là:

 x = ±α + k2π, ()

- Nếu α thỏa mãn điều khiếu nại 0 ≤ α ≤ π với cosα = a thì ta viết α = arccosa. Lúc đó những nghiệm của phương trình (2) là:

 x = ±arccosa + k2π, ()

- Phương trình cosx = cosβ0 có những nghiệm là:

 x = ±β0 + k3600, ()

3. Phương trình tanx = a. (3)

- Tập xác định, hay đk của phương trình (3) là: 

*

- Nếu α vừa lòng điều khiếu nại

*

- Nếu α vừa lòng điều khiếu nại

*

II. Các dạng toán về Phương trình lượng giác và phương thức giải

° Dạng 1: Giải phương trình lượng giác cơ bản

* Phương pháp

- Dùng những công thức nghiệm tương ứng với từng phương trình.

* ví dụ như 1 (Bài 1 trang 28 SGK Đại số cùng Giải tích 11): Giải các phương trình sau:

a) b)

b)

d)

*

* giải mã bài 1 trang 28 SGK Đại số và Giải tích 11:

a)  

*

 

*

b) 

*

 

*

 

*

c) 

*

 

*

 

*

 

*

d)

*
 
*

 

*

*
*
 
*

* lấy ví dụ như 2: Giải những phương trình sau:

 a)

 b)

 c)

 d)

° Lời giải:

a) 

*

 

*
 
*
*

b) 

*

 

*
 
*
 
*

c) 

*

 

*
 
*

d) 

*

 

*
 
*

° Dạng 2: Giải một số trong những phương trình lượng giác đưa được về dạng PT lượng giác cơ bản

* Phương pháp

- Dùng những công thức biến đổi để đưa về phương trình lượng giác đã đến về phương trình cơ bạn dạng như Dạng 1.

* lấy một ví dụ 1: Giải các phương trình sau:

a) 

*

b) 

*

c) 

*

d) 

*

° Lời giải:

a)

*
 
*

 

*
*
 
*

+ Với 

*
 
*
 hoặc 
*

+ cùng với

*
 
*
 hoặc 
*

b) 

*
 
*

 

*
 
*

c)

*
 
*

 

*
 

 

*

 

*

 

*

d)

*
*

 

*
 
*

 

*
 hoặc 
*

 

*

* giữ ý: Bài toán trên áp dụng công thức:

 

*
*

 

*
*

* ví dụ như 2: Giải những phương trình sau:

a) 

b)

° Lời giải:

a) 

 

*
*

 

*
 
*

 

*
 hoặc 
*
 với 
*

b)

 

*
 
*

 

*
 
*

 

*

 

*
 hoặc 
*
 với 
*

* lưu ý: bài bác toán vận dụng công thức đổi khác tích thành tổng:

 

*

 

*

 

*

* ví dụ như 3: Giải những phương trình sau:

a)1 + 2cosx + cos2x = 0

b)cosx + cos2x + cos3x = 0

c)sinx + sin2x + sin3x + sin4x = 0

d)sin2x + sin22x = sin23x

° Lời giải:

a)

*

 

*
 
*

 

*
 
*

b)

*

 

*
 
*

 

*
*
 
*

c)

*

 

*

 

*

 

*

  hoặc 

*

  hoặc 

*

 

*
 hoặc 
*
 hoặc 
*

 

*
 hoặc 
*
 hoặc 
*
 với 
*

d)

*

 

*

 

*

 

*

 

*

 

*

 

*

 

*
 
*

 

*
 hoặc 
*
 hoặc 
*

* lưu lại ý: Bài toán bên trên có áp dụng công thức biến đổi tổng thành tựu và công thức nhân đôi:

 

*

 

*

 

*

 

*

 

*

 

*
 
*

° Dạng 3: Phương trình số 1 có một hàm con số giác

* Phương pháp

- Đưa về dạng phương trình cơ bản, ví dụ: 

* ví dụ như 1: Giải những phương trình sau:

a) 

b) 

° Lời giải:

a)  

 

*
 
*

+ Với 

*

+ Với 

*

b)

 

*

 

*

 

*

 

*
 hoặc 
*

+ Với 

*
 
*
*

+ Với 

*
: vô nghiệm.

° Dạng 4: Phương trình bậc hai bao gồm một hàm số lượng giác

* Phương pháp

♦ Đặt ẩn phụ t, rồi giải phương trình bậc hai so với t, ví dụ:

 + Giải phương trình: asin2x + bsinx + c = 0;

 + Đặt t=sinx (-1≤t≤1), ta có phương trình at2 + bt + c = 0.

* lưu ý: Khi để t=sinx (hoặc t=cosx) thì phải gồm điều kiện: -1≤t≤1

* ví dụ 1: Giải các phương trình sau

a) 

b) 

° Lời giải:

a) 

- Đặt 

*
 ta có: 2t2 - 3t + 1 = 0

 ⇔ t = 1 hoặc t = 1/2.

+ với t = 1: sinx = 1 

*

+ cùng với t=1/2: 

*
 

 

*
 hoặc 
*

b) 

 

*

*

+ Đặt 

*
 ta có: -4t2 + 4t + 3 = 0

 ⇔ t = 3/2 hoặc t = -1/2.

+ t = 3/2 >1 phải loại

*
*
 
*

* Chú ý: Đối cùng với phương trình dạng: asin2x + bsinx.cosx + c.cos2x = 0, (a,b,c≠0). Phương pháp giải như sau:

 - Ta có: cosx = 0 chưa phải là nghiệm của phương trình do a≠0,

 Chia 2 vế mang lại cos2x, ta có:atan2x + btanx + c = 0 (được PT bậc 2 cùng với tanx)

 - nếu như phương trình dạng: asin2x + bsinx.cosx + c.cos2x = d thì ta chũm d = d.sin2x + d.cos2x, với rút gọn đem về dạng trên.

° Dạng 5: Phương trình dạng: asinx + bcosx = c (a,b≠0).

* Phương pháp

◊ giải pháp 1: Chia hai vế phương trình cho , ta được:

 

 - Nếu  thì phương trình vô nghiệm

 - Nếu  thì đặt 

 (hoặc )

- Đưa PT về dạng:  (hoặc ).

 ◊ phương pháp 2: Sử dụng phương pháp sinx cùng cosx theo ;

 

 - Đưa PT về dạng phương trình bậc 2 so với t.

* lưu giữ ý: PT: asinx + bcosx = c, (a≠0,b≠0) có nghiệm khi c2 ≤ a2 + b2

• Dạng bao quát của PT là:asin + bcos = c, (a≠0,b≠0).

* Ví dụ: Giải các phương trình sau:

a) 

b)

° Lời giải:

a) 

+ Ta có: 

*
 khi đó:

  

*

+ Đặt 

*
 ta có: cosφ.sinx + sinφ.cosx = 1.

 

*
 
*
 
*

b) 

 

*
 
*

 

*

 

*
 hoặc 
*

 

*
 hoặc 
*

* lưu ý: bài bác toán áp dụng công thức:

 

*
 

 

*

° Dạng 6: Phương trình đối xứng với sinx với cosx

 a(sinx + cosx) + bsinx.cosx + c = 0 (a,b≠0).

Xem thêm: Lịch Sử Việt Nam Cuối Thế Kỉ 18 Đầu Thế Kỉ 19, Xã Hội Việt Nam Cuối Thế Kỉ 18 Đầu Thế Kỉ 19

* Phương pháp

- Đặt t = sinx + cosx, lúc đó:  thay vào phương trình ta được:

 bt2 + 2at + 2c - b = 0 (*)

- lưu lại ý: 

*
 nên điều kiện của t là: 

- vì thế sau khi tìm kiếm được nghiệm của PT (*) đề nghị kiểm tra (đối chiếu) lại đk của t.

- Phương trình dạng: a(sinx - cosx) + bsinx.cosx + c = 0 chưa hẳn là PT dạng đối xứng nhưng lại cũng rất có thể giải bằng phương pháp tương tự:

 Đặt t = sinx - cosx;  

*

* Ví dụ: Giải những phương trình sau:

a) 2(sinx + cosx) - 4sinx.cosx - 1 = 0

b) sin2x - 12(sinx + cosx) + 12 = 0

° Lời giải:

a) 2(sinx + cosx) - 4sinx.cosx - 1 = 0

+ Đặt t = sinx + cosx, , khi đó:   thay vào phương trình ta được:

 

*
 ⇔ 2t2 - 2t - 1 = 0

  hoặc 

+ Với  

*

 

*
 
*

 

*

+ Tương tự, với 

*

 b) sin2x - 12(sinx + cosx) + 12 = 0

 

*

 

*

Đặt t = sinx + cosx, , khi đó:   thay vào phương trình ta được:

 

*
 
*
 
*

+ cùng với t=1 

*

 

*
*

 

*
 hoặc 
*

*
 hoặc 
*

+ Với 

*
: loại

III. Bài bác tập về các dạng toán Phương trình lượng giác

Bài 2 (trang 28 SGK Đại số với Giải tích 11): Với những giá trị nào của x thì giá trị của những hàm số y = sin 3x với y = sin x bằng nhau?

° giải thuật bài 2 trang 28 SGK Đại số và Giải tích 11:

- Ta có: 

*

 

*
 
*

 

*

- Vậy với 

*
thì 
*

* bài xích 3 (trang 28 SGK Đại số 11): Giải những phương trình sau:

 a) 

 b) 

*

 c) 

 d) 

° lời giải bài 3 trang 28 SGK Đại số và Giải tích 11:

a) 

 

*
 
*

- Kết luận: PT bao gồm nghiệm

*

b) cos3x = cos12º

⇔ 3x = ±12º + k.360º , k ∈ Z

⇔ x = ±4º + k.120º , k ∈ Z

- Kết luận: PT có nghiệm x = ±4º + k.120º , k ∈ Z

c) 

 

*
 

 

*
 hoặc 
*

 

*
 hoặc 
*

 

*
 hoặc 
*

d) 

 

*
 hoặc 
*

 

*
 hoặc 
*

 

*
 hoặc 
*

Bài 4 (trang 29 SGK Đại số và Giải tích 11): Giải phương trình 

° giải thuật bài 3 trang 28 SGK Đại số và Giải tích 11:

- Điều kiện: sin2x≠1

- Ta có:  

*

 

*
 
*

 

*

+ Đến phía trên ta cần so sánh với điều kiện:

- Xét k lẻ tức là: k = 2n + 1

 

*

*
(thỏa điều kiện)

- Xét k chẵn tức là: k = 2n

*

*
 (không thỏa ĐK)

- Kết luận: Vậy PT gồm họ nghiệm là 

*

Bài 1 (trang 36 SGK Đại số và Giải tích 11): Giải phương trình: sin2x – sinx = 0 

° giải mã bài 1 trang 36 SGK Đại số với Giải tích 11:

- Ta có: sin2x – sinx = 0

 

*

 

*
 
*

 

*
 hoặc 
*

- Kết luận: PT có tập nghiệm 

*

* bài 2 (trang 36 SGK Đại số và Giải tích 11): Giải các phương trình sau:

a) 2cos2x – 3cosx + 1 = 0

b) 2sin2x +

*
.sin4x = 0

° giải thuật bài 2 trang 36 SGK Đại số cùng Giải tích 11:

a) 2cos2x – 3cosx + 1 = 0 (1)

- Đặt t = cosx, điều kiện: –1 ≤ t ≤ 1, lúc ấy PT (1) trở thành: 2t2 – 3t + 1 = 0