Phân tích nhiều thức thành nhân tử là kỹ năng và kiến thức cơ sở cho những bài học tập về nhân chia solo thức, đa thức đặc biệt trong các biểu thức phân số gồm chứa vươn lên là trong lịch trình toán 8 và cả các lớp sau này.

Bạn đang xem: Phân tích đa thức thành phân tử


Chính bởi vì vậy, mà câu hỏi nắm vững những cách phân tích đa thức thành nhân tử bằng cách thức đặt nhân tử chung, đội hạng tử, hay phương pháp dùng hằng đẳng thức là vấn đề rất cần thiết. Bài viết dưới đây đang tổng phù hợp các phương thức phân tích đa thức thành nhân tử và vận dụng giải các dạng bài xích tập này.

I. Các cách thức phân tích đa thức thành nhân tử

1. Phân tích nhiều thức thành nhân tử bằng phương pháp đặt nhân tử chung

* Phương pháp:

Tìm nhân tử bình thường là những đối kháng thức, nhiều thức xuất hiện trong tất cả các hạng tử.

- so sánh mỗi hạng tử thành tựu của nhân tử bình thường và một nhân tử khác.

- Viết nhân tử chung ra phía bên ngoài dấu ngoặc, viết những nhân tử còn sót lại của từng hạng tử vào trong dấu ngoặc (và cả lốt của chúng).

 * Ví dụ. so sánh các nhiều thức sau thành nhân tử.

 a) 15x3 - 5x2 + 10x = 5x.(3x2) + 5x.(-x) + 5x.(2) = 5x(3x2 - x + 2)

 b) 28x2y2 - 21xy2 + 14x2y = 7xy.(4xy) + 7xy.(-3y) + 7xy.(2x) = 7xy(4xy - 3y + 2x)

2. Phân tích nhiều thức thành nhân tử với phương pháp dùng hằng đẳng thức

* Phương pháp:

- biến hóa đa thức chúng ta đầu về dạng thân quen của hằng đẳng thức, tiếp nối sử dụng hằng đẳng thức để làm xuất hiên nhân tử chung.

Cần chú ý đến việc vận dụng linh hoạt các hằng đẳng thức xứng đáng nhớ:

 ♦ (A+B)2= A2+2AB+B2

 ♦ (A–B)2= A2– 2AB+ B2

 ♦ A2–B2= (A-B)(A+B)

 ♦ (A+B)3= A3+3A2B +3AB2+B3

 ♦ (A – B)3= A3- 3A2B+ 3AB2- B3

 ♦ A3+ B3= (A+B)(A2- AB +B2)

 ♦ A3- B3= (A- B)(A2+ AB+ B2)

 ♦ (A+B+C)2= A2+ B2+C2+2 AB+ 2AC+ 2BC

* Chú ý: a+b= -(-a-b) ; (a+b)2= (-a-b)2 ; (a-b)2= (b-a)2 ; (a+b)3= -(-a-b)3 ; (a-b)3=-(-a+b)3

* Ví dụ: Phân tích các nhiều thức sau thành nhân tử.

 a) 9x2 – 4 = (3x)2 – 22 = ( 3x– 2)(3x + 2)

 b) 8 – 27x3y6 = 23 – (3xy2)3 = (2 – 3xy2)(4 + 6xy2  + 9x2y4)

 c) 25x4 – 10x2y + y2 = (5x2 – y)2

3. Phương pháp phân tích nhiều thức thành nhân tử bằng phương thức nhóm các hạng tử

* Phương pháp:

- phối hợp các hạng tử tương thích thành từng nhóm.

- Áp dụng tiếp tục các phương thức đặt nhân tử phổ biến hoặc sử dụng hằng đẳng thức.

* Ví dụ: Phân tích các nhiều thức sau thành nhân tử

 a) 2x3 – 3x2 + 2x – 3 = ( 2x3 + 2x) – (3x2 + 3)

= 2x(x2 + 1) – 3( x2 + 1) = ( x2 + 1)( 2x – 3)

 b) x2 – 2xy + y2 – 16 = (x – y)2 - 42 = ( x – y – 4)( x –y + 4)

4. Cách thêm bớt 1 hạng tử hoặc bóc tách hạng tử để phân tích đa thức thành nhân tử

* Phương pháp:

- áp dụng thêm giảm hạng tử linh hoạt để lấy về team hạng tử chung hoặc cần sử dụng hằng đẳng thức

 * Ví dụ: Phân tích các nhiều thức sau thành nhân tử

 a) x4 + 4 = x4 + (4x2 - 4x2) + 4 = x4 + 4x2 + 4 - 4x2 = (x2+2)2 - 4x2

= (x2+2-2x)(x2+2+2x)

 b) x4 + 1 = x4 + 2x2 - 2x2 + 1 = x4 + 2x2 + 1 - 2x2 = (x2+1)2 - 2x2 = (x2+1)2 - (x√2)2

= (x2+1-x√2)(x2+1+x√2)

 c) 3x2 + 8x + 4 = 3x2 + 8x + 16 - 12 = (3x2 – 12) + (8x + 16) = 3(x2 - 4) + 8(x+2)

 =3(x-2)(x+2) + 8(x+2) =(x + 2)<3(x-2)+8> =(x + 2)(3x + 2)

 hoặc: 3x2 + 8x + 4 = 4x2 - x2 + 8x + 4 = (4x2 + 8x + 4) – x2 = (2x + 2)2 – x2

 = (2x + 2 – x)(2x + 2 + x) = (x + 2)(3x + 2)

5. Phối phù hợp nhiều phương thức để phân tích nhiều thức thành nhân tử

* Phương pháp: Sử dụng các phương pháp trên theo đồ vật tự ưu tiên.

- phương thức đặt nhân tử chung.

- phương pháp dùng hằng đẳng thức.

- phương thức nhóm các hạng tử.

 * Ví dụ: Phân tích đa thức sau thành nhân tử

 a) 3xy2 - 6xy + 3x

= 3x(y2 – 2y + 1) (đặt nhân tử chung)

= 3x(y – 1)2 (dùng hằng đẳng thức (A–B)2= A2– 2AB+ B2 trong đoạn này A là y B là 1)

 b) 2x2 + 4x + 2 - 2y2

= 2((x2 + 2x +1) - y2) (đặt nhân tử chung)

= 2((x+1)2 - y2) (dùng hằng đẳng thức: (A+B)2= A2+2AB+B2) trong bước này A là x; B là 1)

= 2(x+1-y)(x+1+y) (dùng hằng đẳng thức: A2–B2= (A-B)(A+B) trong bước này A là x+ 1 còn B là y)

*

II. Vận dụng giải một vài dạng bài xích tập phân tích nhiều thức thành nhân tử

Bài 39 trang 19 skg toán 8 tập 1: Phân tích đa thức thành nhân tử

 a) 3x - 6y;

 b)

*
;

 c) 14x2y – 21xy2 + 28x2y2;

 d)

*
;

 e) 10x(x - y) - 8y(y - x).

* giải mã bài 39 trang 19 skg toán 8 tập 1:

 a) 3x - 6y = 3(x-2y)

 b)

*
*

 c) 14x2y – 21xy2 + 28x2y2 = 7xy.2x - 7xy.3y +7xy.4xy = 7xy(2x-3y+4xy)

 d) 

*
*

 e) 10x(x - y) - 8y(y - x)

- Ta thấy: y - x = –(x – y) đề nghị ta có:

 10x(x - y) - 8y(y - x) =10x(x - y) - 8y<-(x - y)> =10x(x - y) + 8y(x - y) =2(x-y)(5x+4y)

Bài 40 trang 19 skg toán 8 tập 1: Tính quý hiếm của biểu thức

a) 15.91,5 + 150.0,85;

b) x(x - 1) - y(1 - x) trên x = 2001 với y = 1999.

* giải thuật bài 40 trang 19 skg toán 8 tập 1:

- lưu lại ý: cùng với dạng bài xích tập này họ cần phân tích hạng tử để xuất hiện nhân tử tầm thường rồi so với thành nhân tử trước khi tính giá trị.

a) 15.91,5 + 150.0,85 =15.91,5 + 15.10.0,85 =15(91,5 + 10.0,85) =15(91,5 + 8,5) =15.100 =1500.

b) x(x - 1) - y(1 - x)

- Ta thấy: 1 - x = -(x - 1) đề nghị ta có:

 x(x - 1) - y(1 - x) =x(x-1)-y<-(x-1)> =x(x-1)+y(x-1) =(x-1)(x+y)

- Thay x = 2001 và y = 1999 ta được: (2001-1)(2001+1999) =2000.4000 =8000000

Bài 41 trang 19 skg toán 8 tập 1: Tìm x, biết:

a) 5x(x -2000) - x + 2000 = 0;

b) x3 – 13x = 0

* giải mã bài 41 trang 19 skg toán 8 tập 1:

a) 5x(x -2000) - x + 2000 = 0

⇔ 5x(x – 2000) – (x – 2000) = 0

⇔ (x – 2000).(5x – 1) = 0

*
*

- tóm lại có 2 cực hiếm x toại nguyện là x = 2000 cùng x = 1/5.

b) x3 = 13x ⇔ x3 – 13x = 0 ⇔ x(x2 – 13) = 0

*
 ⇔
*

- Kết luận: Có ba giá trị của x thỏa mãn là x = 0, x = √13 và x = –√13.

Bài 42 trang 19 skg toán 8 tập 1:  chứng tỏ rằng 55n + 1 – 55n chia hết cho 54 (với n là số trường đoản cú nhiên)

* Lời giải Bài 42 trang 19 skg toán 8 tập 1: 

- Ta có: 55n + 1 – 55n = 55n.55 - 55n = 55n (55 - 1) = 55n.54

- vày 54 phân tách hết mang lại 54 đề nghị 55n.54 luôn chia hết mang đến 54 với n là số từ bỏ nhiên.

⇒ Vậy 55n + 1 – 55n chia hết đến 54.

Bài 43 trang trăng tròn skg toán 8 tập 1: Phân tích các đa thức sau thành nhân tử:

a) x2 + 6x + 9; b) 10x – 25 – x2

c) ; d)

* lời giải bài 43 trang đôi mươi skg toán 8 tập 1:

a) x2 + 6x + 9 = (x)2 + 2.(x).(3) + (3)2 = (x+3)2

b) 10x – 25 – x2 = –(–10x + 25 + x2) = –(x2 - 10x + 25)

= –<(x)2 – 2.(5).(x) + (5)2> = –(x–5)2

c)

*
*
*

d) 

*
*

Bài 44 trang trăng tròn skg toán 8 tập 1: Phân tích những đa thức sau thành nhân tử:

a)  ; b) (a + b)3 – (a – b)3 

c) (a + b)3 + (a – b)3 ;

d) 8x3 + 12x2y + 6xy2 + y3

e) - x3 + 9x2 – 27x + 27.

* giải thuật bài 44 trang đôi mươi skg toán 8 tập 1: 

a)

*
*
*

b) (a + b)3 – (a – b)3

= <(a + b) – (a – b)> . <(a + b)2 + (a + b).(a – b) + (a – b)2>

= (a + b – a + b) . (a2 + 2ab + b2 + a2 – b2+ a2 – 2ab + b2)

= 2b.(3a2+ b2)

c) (a + b)3 + (a – b)3

= <(a + b) + (a – b)> . <(a + b)2 – (a + b)(a –b) + (a – b)2>

= <(a + b) + (a – b)> . <(a2 + 2ab + b2) – (a2 – b2) + (a2 – 2ab + b2)>

= (a + b + a – b) . (a2 + 2ab + b2 – a2 + b2 + a2 – 2ab + b2)

= 2a.(a2 + 3b2)

d) 8x3 + 12x2y + 6xy2 + y3 = (2x)3 + 3.(2x)2.y + 3.2x.y2 + y3 = (2x + y)3

e) –x3 + 9x2 – 27x + 27= (–x)3 + 3.(–x)2.3 + 3.(–x).32 + 33 = (–x + 3)3 = (3 – x)3

Bài 45 trang đôi mươi skg toán 8 tập 1: Tìm x, biết:

a) 2 - 25x2 = 0

b) 

* giải thuật bài 45 trang 20 skg toán 8 tập 1:

a) 2 - 25x2 = 0 

*
*
*

- Kết luận: vậy gồm 2 nghiệm thoả là x = -√2/5 cùng x= √2/5.

b) 

*
*
*

- Kết luận: vậy có 1 nghiệm thoả là x=1/2.

Bài 46 trang 21 skg toán 8 tập 1: Tính nhanh

a) 732 - 272 ; b) 372 - 132 ; c) 20022 - 22

* giải mã bài 46 trang 21 skg toán 8 tập 1:

a) 732 – 272 = (73 + 27)(73 – 27) = 100.46 = 4600

b) 372 – 132 = (37 + 13)(37 – 13) = 50.24 = 100.12 = 1200

c) 20022 – 22 = (2002 + 2)(2002 – 2) = 2004 .2000 = 4008000

Bài 47 trang 22 skg toán 8 tập 1: Phân tích những đa thức sau thành nhân tử

a) x2 –xy + x – y

b) xz + yz – 5(x + y)

c) 3x2 – 3xy – 5x + 5y

* giải thuật bài 47 trang 22 skg toán 8 tập 1:

a) x2 – xy + x – y

+) Cách 1: Nhóm nhị hạng tử thiết bị 1 với thứ 2, hạng tử thiết bị 3 cùng thứ 4

 x2 – xy + x – y = (x2 – xy) + (x – y) = x(x – y) + (x – y)= (x – y)(x + 1)

+) bí quyết 2: Nhóm hạng tử trang bị 1 với thứ 3 ; hạng tử thứ 2 và lắp thêm 4

 x2 – xy + x – y = (x2 + x) – (xy + y)= x.(x + 1) – y.(x + 1) = (x + 1)(x – y)

b) xz + yz – 5(x + y) = (xz + yz) – 5(x + y) = z(x + y) – 5(x + y) = (x + y)(z – 5)

c) 3x2 – 3xy – 5x + 5y

+) Cách 1: Nhóm hai hạng tử đầu tiên với nhau cùng hai hạng tử cuối cùng với nhau:

 3x2 – 3xy – 5x + 5y = (3x2 – 3xy) – (5x – 5y) = 3x(x – y) – 5(x – y) = (x – y)(3x – 5)

+) phương pháp 2: Nhóm hạng tử đầu tiên với hạng tử lắp thêm 3; hạng tử thứ hai với hạng tử sản phẩm công nghệ 4:

 3x2 – 3xy – 5x + 5y = (3x2 – 5x) – (3xy – 5y) = x(3x – 5) – y(3x – 5)= (3x – 5)(x – y).

Bài 48 trang 22 skg toán 8 tập 1: Phân tích các đa thức sau thành nhân tử

a) x2 + 4x –y2 + 4

b) 3x2 + 6xy + 3y2 – 3z2

c) x2 – 2xy + y2 – z2 + 2zt – t2

* giải mã Bài 48 trang 22 skg toán 8 tập 1:

a) x2 + 4x – y2 + 4

= (x2 + 4x + 4) – y2

= (x + 2)2 – y2 

= (x + 2 – y)(x + 2 + y)

b) 3x2 + 6xy + 3y2 – 3z2 

= 3.(x2 + 2xy + y2 – z2)

= 3<(x2 + 2xy + y2) – z2>

= 3<(x + y)2 – z2>

= 3(x + y – z)(x + y + z)

c) x2 – 2xy + y2 – z2 + 2zt – t2 

= (x2 – 2xy + y2) – (z2 – 2zt + t2) 

= (x – y)2 – (z – t)2

= <(x – y) – (z – t)><(x – y) + (z – t)>

= (x – y – z + t)(x – y + z –t)

Bài 50 trang 23 sgk toán 8 tập 1: Tìm x, biết:

a) x(x – 2) + x – 2 = 0

b) 5x(x – 3) – x + 3 = 0

* lời giải bài 50 trang 23 sgk toán 8 tập 1:

a) x(x – 2) + x – 2 = 0

⇔ (x – 2)(x + 1) = 0

*
 
*

- Kết luận: vậy x = – 1 hoặc x = 2.

b) 5x(x – 3) – x + 3 = 0

⇔ 5x(x – 3) – (x – 3) = 0

⇔ (x – 3)(5x – 1) = 0

*
*
*

- Kết luận: vậy x = 3 hoặc x = 1/5.

Bài 51 trang 24 sgk toán 8 tập 1: Phân tích những đa thức sau thành nhân tử:

a) x3 – 2x2 + x.

b) 2x2 + 4x + 2 – 2y2

c) 2xy – x2 – y2 + 16

* giải mã bài 51 trang 24 sgk toán 8 tập 1:

a) x3 – 2x2 + x

= x.x2 – x.2x + x.1

= x(x2 – 2x + 1)

= x(x – 1)2

b) 2x2 + 4x + 2 – 2y2 

= 2.(x2 + 2x + 1 – y2)

= 2<(x2 + 2x + 1) – y2>

= 2<(x + 1)2 – y2>

= 2(x + 1 – y)(x + 1 + y)

c) 2xy – x2 – y2 + 16

= 16 – (x2 – 2xy + y2) 

= 42 – (x – y)2

= <4 – (x – y)><4 + (x + y)>

= (4 – x + y)(4 + x – y).

Bài 52 trang 24 sgk toán 8 tập 1: Chứng minh rằng (5n + 2)2 – 4 chia hết đến 5 với tất cả số nguyên n.

* giải mã bài 52 trang 24 sgk toán 8 tập 1:

- Ta có: (5n + 2)2 – 4 = (5n + 2)2 – 22 = (5n + 2 – 2)(5n + 2 + 2)= 5n(5n + 4)

- vì 5 ⋮ 5 đề xuất 5n(5n + 4) ⋮ 5 ∀n ∈ Ζ.

Xem thêm: ✅ Đề Kiểm Tra Toán Lớp 2 Cuối Năm Học 2020, Top 6 Đề Thi Học Kì 2 Toán Lớp 2 Năm Học 2020

⇒ Vậy (5n + 2)2 – 4 luôn chia hết mang đến 5 cùng với n ∈ Ζ

Bài 53 trang 24 sgk toán 8 tập 1: Phân tích những đa thức sau thành nhân tử:

a) x2 – 3x + 2

b) x2 + x – 6

c) x2 + 5x + 6

(Gợi ý : Ta không thể vận dụng ngay các phương thức đã học để phân tích nhưng lại nếu tách hạng tử - 3x = - x – 2x thì ta có x2 – 3x + 2 = x2 – x – 2x + 2 với từ đó dễ ợt phân tích tiếp.

Cũng bao gồm thể bóc 2 = - 4 + 6, khi ấy ta bao gồm x2 – 3x + 2 = x2 – 4 – 3x + 6, từ bỏ đó tiện lợi phân tích tiếp)