Hàm số liên tục còn được hiểu là xét tính liên tục của hàm số, đây là một một chủ để quan trọng thuộc toán lớp 11 bậc trung học phổ thông. Là kiến thức căn bản để bạn học tốt chủ đề hàm số. Bài viết này sẽ tóm lược những lý thuyết trọng tâm cần nhớ đồng thời phân dạng bài tập chi tiết giúp bạn rèn luyện kĩ năng giải bài tập hàm số liên tục.
Bạn đang xem: Hàm số liên tục là gì
Bạn đang xem: Hàm số liên tục là gì, lý thuyết về hàm số liên tục
1. Lý thuyết hàm số liên tục
1.1 Hàm số liên tục tại một điểm
Hàm số liên tục là gì?Định nghĩa: Cho hàm số y = f(x) xác định trên khoảng (a; b). Hàm số y = f(x) được gọi là liên tục tại điểm x0 ∈ (a; b) nếu $\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right) = f\left( {{x_0}} \right)$
Nếu tại điểm x0 hàm số y = f(x) không liên tục, thì được gọi là gián đoạn tại x0 và điểm x0 được gọi là điểm gián đoạn của hàm số y = f(x).
Nhận xét. Hàm số được gọi là liên tục tại điểm x0 nếu ba điều kiện sau được đồng thời thỏa mãn:
f(x) xác định tại x0.$\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right)$ tồn tại.$\mathop {\lim }\limits_{x \to {x_0}} f\left( x \right)$ = f(x0)Hàm số y = f(x) gián đoạn tại điểm x0 nếu có ít nhất 1 trong 3 điều kiện trên không thỏa mãn. Nếu sử dụng giới hạn một bên thì:

Đặc trưng khác của tính liên tục tại một điểm
Cho hàm số y = (x) xác định trên (a; b). Giả sử x0 và x (x ≠ x0) là hai phần tử của (a; b)
Hiệu x−x0, ký hiệu: ∆x, được gọi là số gia của đối số tại điểm x0. Ta có: ∆x = x−x0 ⇔ x = x0+∆x.
Hiệu y − y0, ký hiệu: ∆y, được gọi là số gia tương ứng của hàm số tại điểm x0. Ta có: ∆y = y − y0 = f(x) − f(x0) = f(x0 + ∆x) − f(x0).
Đặc trưng: dùng khái niệm số gia, ta có thể đặc trưng tính liên tục của hàm số y = f(x) tại điểm x0 như sau:
1.2 Hàm số liên tục trên một khoảng
Hàm số y = f(x) được gọi là liên tục trong khoảng (a; b) nếu nó liên tục tại mỗi điểm của khoảng đó.Hàm số y = f(x) được gọi là liên tục trên đoạn nếu nó:
1.3 Các định lý về hàm số liên tục
Định lí 2. Tổng, hiệu, tích, thương (với mẫu số khác 0) của các hàm số liên tục tại một điểm là hàm số liên tục tại điểm đó. Giả sử y = f(x) và y = g(x) là hai hàm số liên tục tại điểm x0. Khi đó:
Các hàm số y = f(x) + g(x), y = f(x) − g(x) và y = f(x).g(x) liên tục tại điểm x0Hàm số $y = \frac{{f\left( x \right)}}{{g\left( x \right)}}$ liên tục tại x0 nếu g(x0) = 0
2. Phân dạng hàm số liên tục
Dạng 1. Xét tính liên tục của hàm số tại một điểm

Dạng 2. Xét tính liên tục của hàm số tại một điểm

Bài tập 3. Chứng minh hàm số $f\left( x \right) = \sqrt {8 – 2{x^2}} $ liên tục trên đoạn
Lời giải
Dự vào dạng 3. Xét tính liên tục của hàm số trên một khoảng
Hàm số liên tục trên đoạn
Với x0 ∈ (−2; 2), ta có: $\mathop {\lim }\limits_{x \to {x_0}} \sqrt {8 – 2{x^2}} = \sqrt {8 – 2x_0^2} = f\left( {{x_0}} \right)$
Vậy, hàm số liên tục trên khoảng (−2; 2).
Xem thêm: Tứ Diệp Thảo Là Gì - Bạn Có Phải Là Một The Fighting Boys
Ngoài ra, sử dụng giới hạn một bên ta chứng minh được:
Hàm số f(x) liên tục phải tại điểm x0 = −2.Hàm số f(x) liên tục trái tại điểm x0 = 2.Vậy, hàm số liên tục trên đoạn .Bài tập 4. Chứng minh rằng phương trình x5 + x − 1 = 0 có nghiệm trên khoảng (−1; 1)
Lời giải
Dựa vào dạng 4. Sử dụng tính liên tục của hàm số để chứng minh
Xét hàm số f(x) = x5 + x − 1 liên tục trên R ta có :f(−1).f(1) = −3.1 = −3 Toán Học giải đáp bạn rõ hơn. Chúc bạn học tập hiệu quả,