Trong nội dung bài viết này, chúng tôi sẽ chia sẻ lý thuyết và các dạng bài xích tập về phương trình lượng giác cơ phiên bản giúp các ôn lại kỹ năng để chuẩn bị hành trang thật kỹ cho những kỳ thi đạt kết qua cao nhé


Lý thuyết phương trình lượng giác cơ bạn dạng thường gặp2. Phương trình cos x = cos α, cos x = a (2)Các dạng bài tập về phương trình lượng giác

Lý thuyết phương trình lượng giác cơ bản thường gặp

1. Phương trình sin x = sin α, sin x = a (1)

Nếu |a|>1 thì phương trình vô nghiệm.

Bạn đang xem: Giải phương trình lượng giác lớp 11

Nếu |a|≤1 thì lựa chọn cung α làm thế nào để cho sinα=a. Lúc đó (1)

*


Các ngôi trường hợp sệt biệt:

sin x = 0 ⇔ x = kπ (k ∈ Z)

sin x =1 ⇔ x = π/2 + k2π (k ∈ Z)

sin x = -1 ⇔ x = -π/2 + k2π (k ∈ Z)

sin x = ±1 ⇔ sin2x = 1 ⇔ cos2x = 0 ⇔ cosx = 0 ⇔ x = π/2 + kπ (k ∈ Z)

2. Phương trình cos x = cos α, cos x = a (2)

Nếu |a|>1 thì phương trình vô nghiệm.

Nếu |a|≤1 thì chọn cung α làm sao để cho cosα = a.

Khi kia (2) ⇔ cosx = cosα ⇔ x = ± α + k2π (k ∈ Z)

b. Cosx = a điều kiện -1 ≤ a ≤ 1

cosx = a ⇔ x = ± arccosa + k2π (k ∈ Z)

c. Cosu = cosv ⇔ cosu = cos( π – v)

d. Cosu = sinv ⇔ cosu = cos(π/2 – v)

e. Cosu = – sinv ⇔ cosu = cos(π/2 + v)

Các trường hợp quánh biệt:

*

3. Phương trình tan x = tan α, chảy x = a (3)

Chọn cung α làm thế nào cho tanα = a. Lúc ấy (3)

*

Các ngôi trường hợp sệt biệt:

tanx = 0 ⇔ x = kπ (k ∈ Z)

tanx = ±1 ⇔ x = ± π/4 + kπ (k ∈ Z)

4. Phương trình cot x = cot α, cot x = a (4)

Chọn cung α làm sao để cho cotα = a.

Khi đó (3) cotx = cotα ⇔ x = α + kπ (k ∈ Z)

cotx = a ⇔ x = arccota + kπ (k ∈ Z)

Các ngôi trường hợp quánh biệt:

cotx = 0 ⇔ x = π/2 + kπ (k ∈ Z)

cotx = ±1 ⇔ x = ± π/4 + kπ (k ∈ Z)

5. Phương trình hàng đầu đối với cùng 1 hàm số lượng giác

Dạng asinx + b; acosx + b = 0; atanx + b = 0; acotx+ b = 0 (a, b ∈ Ζ, a ≠ 0)

Cách giải:

Đưa về phương trình cơ bản, lấy ví dụ như asinx + b = 0 ⇔ sinx = -b/a

6. Phương trình bậc hai so với một hàm con số giác

Dạng asin2x + bsinx + c = 0 (a, b ∈ Ζ, a ≠ 0)

Phương pháp

Đặt ẩn phụ t, rồi giải phương trình bậc hai so với t.

Ví dụ: Giải phương trình asin2x + bsinx + c = 0

Đặt t = sinx (-1≤ t ≤1) ta gồm phương trình at2 + bt + c = 0

Lưu ý khi để t = sinx hoặc t = cosx thì nên có đk -1≤ t ≤1

7. Một vài điều đề nghị chú ý:

a) khi giải phương trình gồm chứa những hàm số tang, cotang, tất cả mẫu số hoặc cất căn bậc chẵn, thì tốt nhất thiết yêu cầu đặt điều kiện để phương trình xác định

*

b) Khi kiếm được nghiệm cần kiểm tra điều kiện. Ta thường dùng một trong những cách sau để chất vấn điều kiện:

Kiểm tra trực tiếp bằng phương pháp thay cực hiếm của x vào biểu thức điều kiện.Dùng mặt đường tròn lượng giác để màn trình diễn nghiệmGiải các phương trình vô định.

c) áp dụng MTCT để thử lại các đáp án trắc nghiệm

Các dạng bài tập về phương trình lượng giác

Dạng 1: Giải phương trình lượng giác cơ bản

Phương pháp: Dùng các công thức nghiệm tương ứng với từng phương trình

Ví dụ 1: Giải các phương trình lượng giác sau:

a) sinx = sin(π/6). C) tanx – 1 = 0

b) 2cosx = 1. D) cotx = tan2x.

Lời giải

a) sin⁡x = sin⁡π/6

*

b) 2cosx = 1 ⇔ cosx = ½ ⇔ x = ± π/3 + k2π (k ∈ Z)

c) tan⁡x = 1 ⇔ cos⁡x = π/4 + kπ (k ∈ Z)

d) cot⁡x = tan⁡2x

⇔cotx = cot(π/2 – 2x)

⇔ x = π/2 – 2x + kπ

⇔ x = π/6 + kπ/3 (k ∈ Z)

Ví dụ 2: Giải các phương trình lượng giác sau:

a) cos2 x – sin2x =0.

b) 2sin(2x – 40º) = √3

Lời giải

a) cos2x – sin2x=0 ⇔ cos2x – 2sin⁡x.cos⁡x = 0

⇔ cos⁡x (cos⁡x – 2sin⁡x )=0

*

b) 2 sin⁡(2x-40º )=√3

⇔ sin⁡(2x-40º )=√3/2

*

Ví dụ 3: Giải các phương trình sau: (√3-1)sinx = 2sin2x.

*

Dạng 2: Phương trình số 1 có một lượng chất giác

Phương pháp: Đưa về phương trình cơ bản, lấy một ví dụ asinx + b = 0 ⇔ sinx = -b/a

Ví dụ: Giải phương trình sau:

*

Dạng 3: Phương trình bậc hai bao gồm một hàm vị giác 

Phương pháp

Phương trình bậc hai đối với một hàm con số giác là phương trình có dạng :

a.f2(x) + b.f(x) + c = 0 cùng với f(x) = sinu(x) hoặc f(x) = cosu(x), tanu(x), cotu(x).

Cách giải:

Đặt t = f(x) ta tất cả phương trình : at2 + bt +c = 0

Giải phương trình này ta tìm được t, từ đó tìm kiếm được x

Khi đặt t = sinu(x) hoặc t = cosu(x), ta bao gồm điều kiện: -1 ≤ t ≤ 1

Ví dụ: sin2x +2sinx – 3 = 0

*

Ví dụ 2: 1 + sin2x + cosx + sinx = 0

Lời giải:

⇔ 1 + 2 sin⁡x cos⁡x + 2(cos⁡x+sin⁡x ) = 0

⇔ cos2⁡x + sin2⁡x + 2 sin⁡xcos⁡x + 2 (cos⁡x+sin⁡x )=0

⇔ (sin⁡x + cos⁡x)2 + 2 (cos⁡x+sin⁡x )=0

*

Dạng 4: Phương trình hàng đầu theo sinx cùng cosx

Xét phương trình asinx + bcosx = c (1) với a, b là các số thực khác 0.

*

*

Ví dụ: Giải phương trình sau: cos2x – sin2x = 0.

*

Dạng 5: Phương trình lượng giác đối xứng, bội phản đối xứng

Phương pháp

Phương trình đối xứng là phương trình có dạng:

a(sinx + cosx) + bsinxcosx + c = 0 (3)

Phương pháp giải:

Để giải phương trình trên ta áp dụng phép để ẩn phụ:

*

Thay vào (3) ta được phương trình bậc hai theo t.

Ngoài ra chúng ta còn chạm chán phương trình phản nghịch đối xứng gồm dạng:

a(sinx – cosx) + bsinxcosx + c = 0 (4)

Để giải phương trình này ta cũng đặt

*

Thay vào (4) ta dành được phương trình bậc nhị theo t.

Xem thêm: Công Ty Tnhh 1 Thành Viên Tiếng Anh Là Gì, Công Ty Tnhh Tiếng Anh Là Gì

Ví dụ 1: Giải phương trình sau: 2(sinx + cosx) + 3sin2x = 2.

*

Hy vọng cùng với những kiến thức và kỹ năng mà chúng tôi vừa chia sẻ có thể giúp các bạn hệ thống lại kỹ năng và kiến thức về phương trình lượng giác cơ bản từ đó áp dụng vào làm bài xích tập nhanh chóng và đúng đắn nhé