Giải phương trình tổ hợp, hoán vị cùng chỉnh phù hợp là phần nâng cấp thuộc công tác lớp 11.

Bạn đang xem: Giải phương trình hoán vị, chỉnh hợp, tổ hợp

PHƯƠNG PHÁP

1. Kỹ năng và kiến thức cần nhớ


*

2. Một số trong những dạng toán thường xuyên gặp

Dạng 1:
Giải phương trình, hệ phương trình hoán vị, chỉnh hợp, tổ hợpPhương pháp chung:Sử dụng những công thức tính số hoán vị, chỉnh hợp, tổng hợp để thay đổi phương trình.Kiểm tra điều kiện của nghiệm với kết luận.Dạng 2: Giải bất phương trình hoán vị, chỉnh hợp, tổ hợpPhương pháp chung:Sử dụng các công thức tính số hoán vị, chỉnh hợp, tổng hợp để chuyển đổi bất phương trình.Kiểm tra đk của nghiệm cùng kết luận.

VÍ DỤ VẬN DỤNG

Câu
1.Tìm tất cả các quý hiếm $x in mathbbN$ thỏa mãn nhu cầu $6left( P_x - P_x - 1 ight) = P_x + 1.$A. X = 2.B. X = 3.C. X = 2; x = 3.D. X = 5.
Điều kiện: $x ge 1$ với $x in mathbbN.$Ta gồm $6left( P_x - P_x - 1 ight) = P_x + 1 Leftrightarrow 6left< x! - left( x - 1 ight)! ight> = left( x + 1 ight)! Leftrightarrow 6left( x - 1 ight)!.left( x - 1 ight) = left( x - 1 ight)!.xleft( x + 1 ight)$$ Leftrightarrow 6.left( x - 1 ight) = xleft( x + 1 ight) Leftrightarrow x^2 - 5x + 6 = 0 Leftrightarrow left< eginarraylx = 2 m left( nhan ight)\x = 3 m left( nhan ight)endarray ight..$ chọn C.
Câu
2.Tính tổng S của tất cả các cực hiếm của x vừa lòng $P_2.x^2--P_3.x = 8.$A. S = - 4.B. S = - 1.C. S = 4.D. S = 3.
Ta gồm $P_2.x^2--P_3.x = 8 Leftrightarrow 2!.x^2 - 3!.x = 8 Leftrightarrow 2x^2 - 6x - 8 = 0 Leftrightarrow left< eginarraylx = - 1\x = 4endarray ight.$-> S = - 1 + 4 = 3Chọn D.
Điều kiện: $x ge 2$ cùng $x in mathbbN$.Ta tất cả $3A_x^2 - A_2x^2 + 42 = 0 Leftrightarrow 3.fracx!left( x - 2 ight)! - fracleft( 2x ight)!left( 2x - 2 ight)! + 42 = 0$$ Leftrightarrow 3.left( x - 1 ight).x - left( 2x - 1 ight).2x + 42 = 0 Leftrightarrow x^2 + x - 42 = 0 Leftrightarrow left< eginarraylx = - 7left( loai ight)\x = 6left( nhan ight)endarray ight..$ lựa chọn B.
Câu
4.Cho số tự nhiên và thoải mái x vừa lòng $A_x^10 + A_x^9 = 9A_x^8$. Mệnh đề nào tiếp sau đây đúng?A. X là số chủ yếu phương.B. X là số nguyên tố.C. X là số chẵn.D. X là số chia hết cho 3
Điều kiện: $x ge 10$ cùng $x in mathbbN$.Ta tất cả $A_x^10 + A_x^9 = 9A_x^8 Leftrightarrow fracx!left( x - 10 ight)! + fracx!left( x - 9 ight)! = 9fracx!left( x - 8 ight)!$$ Leftrightarrow frac11 + frac1x - 9 = frac9left( x - 9 ight)left( x - 8 ight) Leftrightarrow x^2 - 16x + 55 = 0 Leftrightarrow left< eginarraylx = 11left( nhan ight)\x = 5left( loai ight)endarray ight..$ lựa chọn B.
Câu
5.Có từng nào số tự nhiên $n$ thỏa mãn $A_n^3 + 5A_n^2 = 2left( n + 15 ight)$?A. 0.B. 1C. 2D. 3
Điều kiện: $n ge 3$ cùng $n in mathbbN.$Ta bao gồm $A_n^3 + 5A_n^2 = 2left( n + 15 ight) Leftrightarrow fracn!left( n - 3 ight)! + 5.fracn!left( n - 2 ight)! - 2n - 30 = 0$$ Leftrightarrow left( n - 2 ight).left( n - 1 ight).n + 5.left( n - 1 ight).n - 2n - 30 = 0 Leftrightarrow n^3 + 2n^2 - 5n - 30 = 0 Leftrightarrow n = 3.$ chọn B.
Câu
6.Tìm cực hiếm $n in mathbbN$ thỏa mãn $C_n + 1^1 + 3C_n + 2^2 = C_n + 1^3.$A. N = 12.B. N = 9.C. N = 16.D. N = 2.
Điều kiện: $n ge 2$ cùng $n in mathbbN.$Ta bao gồm $C_n + 1^1 + 3C_n + 2^2 = C_n + 1^3 Leftrightarrow fracleft( n + 1 ight)!1!.n! + 3.fracleft( n + 2 ight)!2!.n! = fracleft( n + 1 ight)!3!.left( n - 2 ight)!$$ Leftrightarrow n + 1 + 3.fracleft( n + 1 ight).left( n + 2 ight)2 = fracleft( n - 1 ight).n.left( n + 1 ight)6 Leftrightarrow 1 + 3.fracleft( n + 2 ight)2 = fracleft( n - 1 ight).n.6$$ Leftrightarrow 6 + 9n + 18 = n^2 - n Leftrightarrow n^2 - 10n - 24 = 0 Leftrightarrow left< eginarrayln = - 2left( loai ight)\n = 12left( nhan ight)endarray ight..$ lựa chọn A.
Câu
7.Tính tích phường của tất cả các giá trị của x vừa lòng $C_14^x + C_14^x + 2 = 2C_14^x + 1.$A. P = 4.B. P. = 32.C. P. = - 32.D. P = 12.
Điều kiện: $0 le x le 12$ với $x in mathbbN$.Ta có $C_14^x + C_14^x + 2 = 2C_14^x + 1 Leftrightarrow frac14!x!left( 14 - x ight)! + frac14!left( x + 2 ight)!left( 12 - x ight)! = 2frac14!left( x + 1 ight)!left( 13 - x ight)!$$eginarrayl Leftrightarrow frac1left( 14 - x ight)left( 13 - x ight) + frac1left( x + 1 ight)left( x + 2 ight) = 2.frac1left( x + 1 ight)left( 13 - x ight)\ Leftrightarrow left( x + 1 ight)left( x + 2 ight) + left( 14 - x ight)left( 13 - x ight) = 2left( x + 2 ight)left( 14 - x ight)endarray$$ Leftrightarrow x^2 - 12x + 32 = 0 Leftrightarrow left< eginarrayl x = 4\ x = 8 endarray ight. o p. = 4.8 = 32.$Chọn B.
Câu
8.Tính tổng S của tất cả các giá trị của $n$ thỏa mãn nhu cầu $frac1C_n^1 - frac1C_n + 1^2 = frac76C_n + 4^1.$A. S = 8.B. S = 11.C. S = 12.D. S = 15.
Điều kiện: $n ge 1$ cùng $n in mathbbN$.Ta gồm $frac1C_n^1 - frac1C_n + 1^2 = frac76C_n + 4^1 Leftrightarrow fracleft( n - 1 ight)!n! - frac2!.left( n - 1 ight)!left( n + 1 ight)! = frac7left( n + 3 ight)!6left( n + 4 ight)! Leftrightarrow frac1n - frac2nleft( n + 1 ight) = frac76left( n + 4 ight)$$ Leftrightarrow n^2 - 11n + 24 = 0 Leftrightarrow left< eginarrayln = 3left( nhan ight)\n = 8left( nhan ight)endarray ight. o S = 3 + 8 = 11.$ chọn B.
Câu
9.Tìm cực hiếm $x in mathbbN$ vừa lòng $C_x^0 + C_x^x - 1 + C_x^x - 2 = 79.$A. X = 13.B. X = 17.C. X = 16.D. X = 12.
Điều kiện: $x in mathbbN$.Ta gồm $C_x^0 + C_x^x - 1 + C_x^x - 2 = 79 Leftrightarrow C_x^0 + C_x^1 + C_x^2 = 79$$ Leftrightarrow 1 + x + fracxleft( x - 1 ight)2 = 79 Leftrightarrow x^2 + x - 156 = 0 Leftrightarrow left< eginarraylx = 12left( nhan ight)\x = - 13left( loai ight)endarray ight..$ lựa chọn D.
Câu
10.Tìm quý hiếm $n in mathbbN$ vừa lòng $C_n + 4^n + 1 - C_n + 3^n = 7left( n + 3 ight).$A. N = 15.B. N = 18.C. N = 16.D. N = 12.
Điều kiện: $n in mathbbN$.Ta có $C_n + 4^n + 1 - C_n + 3^n = 7left( n + 3 ight) Leftrightarrow C_n + 4^3 - C_n + 3^3 = 7left( n + 3 ight)$$ Leftrightarrow fracleft( n + 4 ight)left( n + 2 ight)3! - fracleft( n + 2 ight)left( n + 1 ight)3! = 7 Leftrightarrow 3n - 36 = 0 Leftrightarrow n = 12left( nhan ight).$ chọn D.
Câu
11.Tìm quý giá $n in mathbbN$ thỏa mãn nhu cầu $C_n^1 + C_n^2 + C_n^3 = frac7n2.$A. N = 3.B. N = 4.C. N = 6.D. N = 8.
Ta có $C_n^1 + C_n^2 + C_n^3 = frac7n2 Leftrightarrow fracn!left( n - 1 ight)! + fracn!2!.left( n - 2 ight)! + fracn!3!left( n - 3 ight)! = frac7n2$$ Leftrightarrow n^2 - 16 = 0 o n = 4.$ lựa chọn B.
Câu
12.Tính tổng S của toàn bộ các quý giá của x thỏa $C_x^1 + 6C_x^2 + 6C_x^3 = 9x^2 - 14x.$A. S = 2.B. S = 7.C. S = 9.D. S = 14.
Điều kiện: $x ge 3$ và $x in mathbbN.$Ta tất cả $C_x^1 + 6C_x^2 + 6C_x^3 = 9x^2 - 14x Leftrightarrow fracx!1!.left( x - 1 ight)! + 6.fracx!2!.left( x - 2 ight)! + 6.fracx!3!.left( x - 3 ight)! = 9x^2 - 14x$$ Leftrightarrow x + 3xleft( x - 1 ight) + left( x - 2 ight)left( x - 1 ight)x = 9x^2 - 14x Leftrightarrow left< eginarraylx = 0left( loai ight)\x = 2left( loai ight)\x = 7left( nhan ight)endarray ight..$ lựa chọn B.
Câu
13.Tìm quý giá $n in mathbbN$ vừa lòng $C_n^6 + 3C_n^7 + 3C_n^8 + C_n^9 = 2C_n + 2^8.$A. N = 18.B. N = 16.C. N = 15.D. N = 14.
Điều kiện: $n ge 9$ với $n in mathbbN.$Áp dụng công thức $C_n^k + C_n^k + 1 = C_n + 1^k + 1$, ta gồm $C_n^6 + 3C_n^7 + 3C_n^8 + C_n^9 = 2C_n + 2^8$$ Leftrightarrow C_n^6 + C_n^7 + 2left( C_n^7 + C_n^8 ight) + C_n^8 + C_n^9 = 2C_n + 2^8 Leftrightarrow C_n + 1^7 + 2C_n + 1^8 + C_n + 1^9 = 2C_n + 2^8$$ Leftrightarrow left( C_n + 1^7 + C_n + 1^8 ight) + left( C_n + 1^8 + C_n + 1^9 ight) = 2C_n + 2^8 Leftrightarrow C_n + 2^8 + C_n + 2^9 = 2C_n + 2^8$$ Leftrightarrow C_n + 2^9 = C_n + 2^8 o n + 2 = 9 + 8 Leftrightarrow n = 15.$ chọn C.
Câu
14.Đẳng thức nào sau đây là sai?A. $C_2007^7 = C_2006^7 + C_2006^6.$B. $C_2007^7 = C_2006^2000 + C_2006^6.$C. $C_2007^7 = C_2006^2000 + C_2006^1999.$D. $C_2007^7 = C_2006^7 + C_2006^2000.$
Áp dụng công thức $C_n^k + C_n^k + 1 = C_n + 1^k + 1$, ta gồm $C_2006^6 + C_2006^7 = C_2007^7$. Vì vậy A đúng.Áp dụng cách làm $C_n^k = C_n^n - k o left{ eginarrayl C_2006^6 = C_2006^2000\ C_2006^7 = C_2006^1999 endarray ight..$Suy ra $C_2007^7 = C_2006^6 + C_2006^7 = C_2006^2000 + C_2006^1999 = C_2006^2000 + C_2006^7$. Do đó C, D đúng; B sai.Chọn B.
Câu
15.Đẳng thức như thế nào sau đó là đúng?A. $1 + 2 + 3 + 4 + ... + n = C_n + 1^2.$B. $1 + 2 + 3 + 4 + ... + n = A_n + 1^2.$C. $1 + 2 + 3 + 4 + ... + n = C_n^1 + C_n^2 + .... + C_n^n.$D. $1 + 2 + 3 + 4 + ... + n = A_n^1 + A_n^2 + .... + A_n^n.$
Ta bao gồm $1 + 2 + 3 + 4 + ... + n = fracnleft( n + 1 ight)2$ cùng $C_n + 1^2 = fracleft( n + 1 ight)!2!left( n + 1 - 2 ight)! = fracnleft( n + 1 ight)2.$Do kia A đúng. Chọn A.
Câu
16.Tính tích p. Của tất cả các cực hiếm của $n$ thỏa mãn $P_nA_n^2 + 72 = 6left( A_n^2 + 2P_n ight).$A. P = 12.B. P. = 5.C. P. = 10.D. P. = 6.
Điều kiện: $n ge 2$ cùng $n in mathbbN.$Ta bao gồm $P_nA_n^2 + 72 = 6left( A_n^2 + 2P_n ight) Leftrightarrow n!.fracn!left( n - 2 ight)! + 72 = 6left< fracn!left( n - 2 ight)! + 2.n! ight>$$ Leftrightarrow n!.left( n - 1 ight).n + 72 = 6left< left( n - 1 ight)n + 2.n! ight> Leftrightarrow left( n! - 6 ight)left( n^2 - n - 12 ight) = 0$$ Leftrightarrow left< eginarrayl n^2 - n - 12 = 0\ n! - 6 = 0 endarray ight. Leftrightarrow left< eginarrayl n = 4left( nhan ight)\ n = - 3left( loai ight)\ n = 3left( nhan ight) endarray ight. o phường = 4.3 = 12.$Chọn A.
Câu
17.Tính tích p. Của toàn bộ các cực hiếm của x thỏa mãn nhu cầu $7left( A_x + 1^x - 1 + 2P_x - 1 ight) = 30P_x.$A. P = 7.B. Phường = 4.C. P. = 28.D. P. = 14.
Điều kiện: $x ge 1$ cùng $x in mathbbN$.Ta tất cả $7left( A_x + 1^x - 1 + 2P_x - 1 ight) = 30P_x Leftrightarrow 7left< fracleft( x + 1 ight)!2! + 2left( x - 1 ight)! ight> = 30x!$$ Leftrightarrow 7left< fracxleft( x + 1 ight)2 + 2 ight> = 30x Leftrightarrow 7x^2 - 53x + 28 = 0 Leftrightarrow left< eginarraylx = 7left( nhan ight)\x = frac47left( loai ight)endarray ight. o p. = 7.$ lựa chọn A.
Câu
18.Tìm giá trị $n in mathbbN$ thỏa mãn $C_n + 8^n + 3 = 5A_n + 6^3.$A. N = 15.B. N = 17.C. N = 6.D. N = 14.
Áp dụng cách làm $C_n^k = C_n^n - k$, ta tất cả $C_n + 8^n + 3 = 5A_n + 6^3 Leftrightarrow C_n + 8^5 = 5.A_n + 6^3$$ Leftrightarrow fracleft( n + 8 ight)left( n + 7 ight)5! = 5 Leftrightarrow n^2 + 15n - 544 = 0 Leftrightarrow left< eginarrayln = 17left( nhan ight)\n = - 32left( nhan ight)endarray ight..$ chọn B.
Câu
19.Tìm cực hiếm $x in mathbbN$ thỏa mãn nhu cầu $A_x^2.C_x^x - 1 = 48.$A. X = 4.B. X = 3.C. X = 7.D. X = 12.
Điều kiện: $x ge 2$ cùng $x in mathbbN$.Ta bao gồm $A_x^2.C_x^x - 1 = 48 Leftrightarrow fracx!left( x - 2 ight)!.fracx!left( x - 1 ight)!.1! = 48$$ Leftrightarrow left( x - 1 ight)x.x = 48 Leftrightarrow x^3 - x^2 - 48 = 0 Leftrightarrow x = 4left( tho^u a ma~o n ight).$ lựa chọn A.
Câu
20.Tìm quý giá $n in mathbbN$ thỏa mãn $A_n^2 - C_n + 1^n - 1 = 5.$A. N = 3.B. N = 5.C. N = 4.D. N = 6.
Điều kiện: $n ge 2$ cùng $n in mathbbN.$Ta gồm $A_n^2 - C_n + 1^n - 1 = 5 Leftrightarrow fracn!left( n - 2 ight)! - fracleft( n + 1 ight)!left( n - 1 ight)!2! = 5 Leftrightarrow left( n - 1 ight).n - fracnleft( n + 1 ight)2 - 5 = 0$$ Leftrightarrow n^2 - 3n - 10 = 0 Leftrightarrow left< eginarrayln = - 2;left( loai ight)\n = 5left( nhan ight)endarray ight..$ chọn B.
Câu
21.Tính tích p. Của toàn bộ các quý giá của $n$ thỏa mãn $A_n^2 - 3C_n^2 = 15 - 5n.$A. P. = 5.B. P = 6.C. Phường = 30.D. P. = 360.
Điều kiện: $n ge 2$ cùng $n in mathbbN.$Ta bao gồm $A_n^2 - 3C_n^2 = 15 - 5n Leftrightarrow fracn!left( n - 2 ight)! - 3.fracn!2!.left( n - 2 ight)! = 15 - 5n$$ Leftrightarrow nleft( n - 1 ight) - 3fracnleft( n - 1 ight)2 = 15 - 5n Leftrightarrow - n^2 + 11n - 30 = 0 Leftrightarrow left< eginarrayln = 6left( nhan ight)\n = 5left( nhan ight)endarray ight.$-> p = 5.6 = 30Chọn C.
Câu
22.Tìm quý hiếm $x in mathbbN$ thỏa mãn $3A_x^4 = 24left( A_x + 1^3 - C_x^x - 4 ight).$A. X = 3.B. X = 1.C. X = 5.D. $x = 1; m x = 5.$
Điều kiện: $x ge 4$ và $x in mathbbN$.Ta tất cả $3A_x^4 = 24left( A_x + 1^3 - C_x^x - 4 ight) Leftrightarrow 23.fracx!left( x - 4 ight)! = 24.left< fracleft( x + 1 ight)!left( x - 2 ight)! - fracx!left( x - 4 ight)!.4! ight>$$ Leftrightarrow 23.frac1left( x - 4 ight)! = 24.left< fracx + 1left( x - 2 ight)! - frac1left( x - 4 ight)!.4! ight> Leftrightarrow 23.frac11 = 24.left< fracx + 1left( x - 2 ight)left( x - 3 ight) - frac11.24 ight>$$ Leftrightarrow 23 = 24.fracx + 1left( x - 2 ight)left( x - 3 ight) - 1 Leftrightarrow fracx + 1left( x - 2 ight)left( x - 3 ight) = 1 Leftrightarrow left< eginarraylx = 1left( loai ight)\x = 5left( nhan ight)endarray ight..$ chọn C.
Câu
23.Có từng nào số tự nhiên $n$ thỏa mãn $fracA_n + 4^4left( n + 2 ight)! B. 2C. 3D. Vô số.
Điều kiện: $n in mathbbN$.Ta gồm $fracA_n + 4^4left( n + 2 ight)! $ Leftrightarrow left( n + 3 ight)left( n + 4 ight) Câu 24.Có từng nào số tự nhiên $n$ vừa lòng $2C_n + 1^2 + 3A_n^2 - đôi mươi B. 2C. 3D. Vô số.
Điều kiện: $n ge 2$ cùng $n in mathbbN$.Ta có $2C_n + 1^2 + 3A_n^2 - 20 $ Leftrightarrow nleft( n + 1 ight) + 3left( n - 1 ight)n - 20 Câu 25.Có bao nhiêu số tự nhiên $n$ thỏa mãn nhu cầu $2C_n + 1^2 + m 3A_n^2 B. 2C. 3D. Vô số.
Điều kiện: $n ge 2$ với $n in mathbbN$.Ta có $2C_n + 1^2 + m 3A_n^2 $ Leftrightarrow nleft( n + 1 ight) + 3left( n - 1 ight)x Câu 26.Có bao nhiêu số tự nhiên $n$ thỏa mãn $14.P_3C_n - 1^n - 3 B. 2C. 3D. Vô số.
Điều kiện: $n ge 3$ với $n in mathbbN$.Ta gồm $14.P_3C_n - 1^n - 3 $eginarrayl Leftrightarrow 42left( n - 2 ight)left( n - 1 ight) 0 Leftrightarrow left< eginarrayln 6endarray ight.endarray$$ o left{ eginarrayln ge 7\n in mathbbNendarray ight..$ chọn D.
Câu 27.Giải hệ phương trình $left{ eginarraylC_x^y - C_x^y + 1 = 0\4C_x^y - 5C_x^y - 1 = 0endarray ight..$A. $left{ eginarraylx = 17\y = 8endarray ight..$B. $left{ eginarraylx = 17\y = - 8endarray ight..$C. $left{ eginarraylx = 9\y = 8endarray ight..$D. $left{ eginarraylx = 7\y = 9endarray ight..$
Điều kiện: $x ge y + 1$ và $x,y in mathbbN$.Ta bao gồm $left{ eginarray*20lC_x^y - C_x^y + 1 = 0&left( 1 ight)\4C_x^y - 5C_x^y - 1 = 0&left( 2 ight)endarray ight.$.Phương trình $left( 1 ight) Leftrightarrow C_x^y = C_x^y + 1 Leftrightarrow y + y + 1 = x Leftrightarrow x - 2y - 1 = 0$.Phương trình $left( 2 ight) Leftrightarrow 4C_x^y = 5C_x^y - 1 Leftrightarrow 4.fracx!y!.left( x - y ight)! = 5.fracx!left( y - 1 ight)!.left( x - y + 1 ight)!$$ Leftrightarrow frac4y = frac5x - y + 1 Leftrightarrow 4x - 9y + 4 = 0.$Do đó hệ phương trình đã đến $ Leftrightarrow left{ eginarraylx - 2y - 1 = 0\4x - 9y + 4 = 0endarray ight. Leftrightarrow left{ eginarraylx = 17\y = 8endarray ight.left( tho^u a ma~o n ight).$ lựa chọn A.
Câu
28.Tìm cặp số $left( x;y ight)$ thỏa mãn $fracC_x + 1^y6 = fracC_x^y + 15 = fracC_x^y - 12.$A. $left( x;y ight) = left( 8;3 ight).$B. $left( x;y ight) = left( 3;8 ight).$C. $left( x;y ight) = left( - 1;0 ight).$D. $left( x;y ight) = left( - 1;0 ight), m left( x;y ight) = left( 8;3 ight).$
Điều kiện: $x ge y + 1$ cùng $x,y in mathbbN$.$fracC_x + 1^y6 = fracC_x^y + 15 Leftrightarrow 5.C_x + 1^y = 6.C_x^y + 1 Leftrightarrow frac5left( x + 1 ight)!y!left( x + 1 - y ight)! = frac6x!left( y + 1 ight)!left( x - y - 1 ight)!$$ Leftrightarrow frac5left( x + 1 ight)left( x - y ight)left( x - y + 1 ight) = frac6left( y + 1 ight) Leftrightarrow 5left( y + 1 ight)left( x + 1 ight) = 6left( x - y ight)left( x - y + 1 ight)$. $left( 1 ight)$$fracC_x^y + 15 = fracC_x^y - 12 Leftrightarrow 2.C_x^y + 1 = 5.C_x^y - 1 Leftrightarrow fracx!5.left( y + 1 ight)!.left( x - y - 1 ight)! = fracx!2.left( y - 1 ight)!.left( x - y + 1 ight)!$$ Leftrightarrow frac15.yleft( y + 1 ight) = frac12.left( x - y ight)left( x - y + 1 ight)$ $ Leftrightarrow 5.yleft( y + 1 ight) = 2.left( x - y ight)left( x - y + 1 ight) Leftrightarrow 15.yleft( y + 1 ight) = 6.left( x - y ight)left( x - y + 1 ight)$. $left( 2 ight)$Từ $left( 1 ight)$ với $left( 2 ight)$, suy ra $ Leftrightarrow 5left( y + 1 ight)left( x + 1 ight) = 15.yleft( y + 1 ight) Leftrightarrow x + 1 = 3y$. Nỗ lực vào $left( 1 ight)$, ta được$ Leftrightarrow 15left( y + 1 ight)y = 6left( 2y - 1 ight)2y Leftrightarrow 3y^2 - 9y = 0 Leftrightarrow left< eginarrayly = 0 o x = - 1left( loai ight)\y = 3 o x = 8left( nhan ight)endarray ight..$ lựa chọn A.
Câu
29.Giải hệ phương trình $left{ eginarraylC_y^x:C_y + 2^x = frac13\C_y^x:A_y^x = frac124endarray ight..$A. $left{ eginarraylx = 4\y = 1endarray ight..$B. $left{ eginarraylx = 4\y = 8endarray ight..$C. $left{ eginarraylx = 4\y = 1endarray ight., m left{ eginarraylx = 4\y = 8endarray ight..$D. $left{ eginarraylx = 1\y = 8endarray ight..$
Điều kiện: $y ge x$ cùng $x,y in mathbbN$.Ta bao gồm $left{ eginarray*20lC_y^x:C_y + 2^x = frac13&left( 1 ight)\C_y^x:A_y^x = frac124&left( 2 ight)endarray ight..$Phương trình $left( 2 ight) Leftrightarrow fracC_y^xA_y^x = frac124 Leftrightarrow 24C_y^x = A_y^x Leftrightarrow 24.fracy!x!left( y - x ight)! = fracy!left( y - x ight)! Leftrightarrow frac24x! = 1 Leftrightarrow x = 4$.Thay $x = 4$ vào $left( 1 ight)$, ta được $fracC_y^4C_y + 2^4 = frac13 Leftrightarrow 3C_y^4 = C_y + 2^4 Leftrightarrow 3.fracy!4!.left( y - 4 ight)! = fracleft( y + 2 ight)!4!.left( y - 2 ight)!$$ Leftrightarrow frac31 = fracleft( y + 1 ight)left( y + 2 ight)left( y - 3 ight)left( y - 2 ight) Leftrightarrow y^2 - 9y + 8 = 0 Leftrightarrow left< eginarrayly = 1 4 = xleft( nhan ight)endarray ight..$ lựa chọn B.

Xem thêm: Đề Thi Học Kì 2 Lớp 8 Môn Toán Hà Nội, Đề Thi Hk2 Toán 8


Câu
30.Giải hệ phương trình $left{ eginarrayl2A_x^y + 5C_x^y = 90\5A_x^y - 2C_x^y = 80endarray ight.$.A. $left{ eginarraylx = 5\y = 2endarray ight..$B. $left{ eginarraylx = 20\y = 10endarray ight..$C. $left{ eginarraylx = 2\y = 5endarray ight..$D. $left{ eginarraylx = 6\y = 3endarray ight..$
Điều kiện: $x ge y$ cùng $x,y in mathbbN$.Đặt $left{ eginarraylu = A_x^y\v = C_x^yendarray ight.$, ta được $left{ eginarrayl2u + 5v = 90\5u - 2v = 80endarray ight. Leftrightarrow left{ eginarraylu = 20\v = 10endarray ight.$.Ta gồm $A_n^k = k!C_n^k o u = y!.v Leftrightarrow 20 = y!.10 Leftrightarrow y! = 2 Leftrightarrow y = 2.$Với $u = 20$, suy ra $A_x^y = trăng tròn Leftrightarrow A_x^2 = 20 Leftrightarrow fracx!left( x - 2 ight)! = trăng tròn Leftrightarrow left( x - 1 ight)x = đôi mươi Leftrightarrow left< eginarraylx = 5\x = - 4left( loai ight)endarray ight..$Vậy hệ phương trình có nghiệm $left{ eginarraylx = 5\y = 2endarray ight..$ chọn A.