Cách giải phương trình lượng giác cơ bản
Với biện pháp giải phương trình lượng giác cơ bản Toán lớp 11 tất cả đầy đủ phương thức giải, lấy ví dụ minh họa và bài xích tập trắc nghiệm gồm lời giải chi tiết sẽ giúp học sinh ôn tập, biết phương pháp làm dạng bài xích tập phương trình lượng giác từ kia đạt điểm trên cao trong bài thi môn Toán lớp 11.
Bạn đang xem: Cách giải toán lượng giác 11

A. Cách thức giải và Ví dụ
- Phương trình sinx = a (1)
♦ |a| > 1: phương trình (1) vô nghiệm.
♦ |a| ≤ 1: call α là một cung thỏa mãn nhu cầu sinα = a.
lúc đó phương trình (1) có những nghiệm là
x = α + k2π, k ∈ Z
cùng x = π-α + k2π, k ∈ Z.
Nếu α thỏa mãn nhu cầu điều kiện cùng sinα = a thì ta viết α = arcsin a.
Khi đó các nghiệm của phương trình (1) là
x = arcsina + k2π, k ∈ Z
cùng x = π - arcsina + k2π, k ∈ Z.
Các trường hợp sệt biệt:

- Phương trình cosx = a (2)
♦ |a| > 1: phương trình (2) vô nghiệm.
♦ |a| ≤ 1: gọi α là 1 trong những cung thỏa mãn nhu cầu cosα = a.
Khi kia phương trình (2) có các nghiệm là
x = α + k2π, k ∈ Z
và x = -α + k2π, k ∈ Z.
Nếu α thỏa mãn điều kiện với cosα = a thì ta viết α = arccos a.
Khi đó các nghiệm của phương trình (2) là
x = arccosa + k2π, k ∈ Z
cùng x = -arccosa + k2π, k ∈ Z.
Các ngôi trường hợp đặc biệt:

- Phương trình tanx = a (3)
Điều kiện:

Khi đó những nghiệm của phương trình (3) là
x = arctana + kπ,k ∈ Z
- Phương trình cotx = a (4)
Điều kiện: x ≠ kπ, k ∈ Z.
Nếu α vừa lòng điều khiếu nại cùng cotα = a thì ta viết α = arccot a.
Khi đó các nghiệm của phương trình (4) là
x = arccota + kπ, k ∈ Z

Ví dụ minh họa
Bài 1: Giải các phương trình lượng giác sau:
a) sinx = sin(π/6) c) tanx – 1 = 0
b) 2cosx = 1. d) cotx = tan2x.
Xem thêm: Dàn Ý Chứng Minh Rằng Nói Dối Có Hại Cho Bản Thân (Điểm Cao)
Bài 2: Giải những phương trình lượng giác sau:
a) cos2 x - sin2x =0.
b) 2sin(2x – 40º) = √3
Bài 3: Giải những phương trình lượng giác sau:

Đáp án và giải đáp giải
Bài 1: Giải những phương trình lượng giác sau:
a) sinx = sinπ/6

b)

c) tanx=1⇔cosx= π/4+kπ (k ∈ Z)
d) cotx=tan2x

Bài 2: Giải các phương trình lượng giác sau:
a) cos2x-sin2x=0 ⇔cos2x-2 sinx cosx=0
⇔ cosx (cosx - 2 sinx )=0

b) 2 sin(2x-40º )=√3
⇔ sin(2x-40º )=√3/2

Bài 3: Giải các phương trình lượng giác sau:
a) sin(2x+1)=cos(3x+2)

b)

⇔ sinx+1=1+4k
⇔ sinx=4k (k ∈ Z)
Nếu |4k| > 1⇔|k| > 1/4; phương trình vô nghiệm
Nếu |4k| ≤ 1 nhưng k nguyên ⇒ k = 0 .Khi đó:
⇔sinx = 0 ⇔ x = mπ (m ∈ Z)

B. Bài bác tập vận dụng
Bài 1: Giải những phương trình sau
a) cos(3x + π) = 0
b) cos (π/2 - x) = sin2x
Lời giải:


Bài 2: Giải những phương trình sau
a) sinx.cosx = 1
b) cos2 x - sin2 x + 1 = 0
Lời giải:


Bài 3: Giải những phương trình sau
a) cos2 x - 3cosx + 2 = 0
b) 1/(cos2 x) - 2 = 0.
Lời giải:


Bài 4: Giải các phương trình sau: (√3-1)sinx = 2sin2x.
Lời giải:

Bài 5: Giải các phương trình sau: (√3-1)sinx + (√3+1)cosx = 2√2 sin2x