Lớp 1

Lớp 2

Lớp 2 - liên kết tri thức

Lớp 2 - Chân trời sáng sủa tạo

Lớp 2 - Cánh diều

Tài liệu tham khảo

Lớp 3

Sách giáo khoa

Tài liệu tham khảo

Sách VNEN

Lớp 4

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Lớp 5

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Lớp 6

Lớp 6 - kết nối tri thức

Lớp 6 - Chân trời sáng tạo

Lớp 6 - Cánh diều

Sách/Vở bài xích tập

Đề thi

Chuyên đề và Trắc nghiệm

Lớp 7

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 8

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Chuyên đề & Trắc nghiệm

Lớp 9

Sách giáo khoa

Sách/Vở bài xích tập

Đề thi

Chuyên đề và Trắc nghiệm

Lớp 10

Sách giáo khoa

Sách/Vở bài xích tập

Đề thi

Chuyên đề và Trắc nghiệm

Lớp 11

Sách giáo khoa

Sách/Vở bài xích tập

Đề thi

Chuyên đề và Trắc nghiệm

Lớp 12

Sách giáo khoa

Sách/Vở bài tập

Đề thi

Chuyên đề & Trắc nghiệm

IT

Ngữ pháp giờ Anh

Lập trình Java

Phát triển web

Lập trình C, C++, Python

Cơ sở dữ liệu


*

Chuyên đề Toán 9Chuyên đề: Hệ hai phương trình hàng đầu hai ẩnChuyên đề: Phương trình bậc nhì một ẩn sốChuyên đề: Hệ thức lượng vào tam giác vuôngChuyên đề: Đường trònChuyên đề: Góc với mặt đường trònChuyên đề: hình trụ - Hình Nón - Hình Cầu
4 cách giải phương trình vô tỉ rất hay
Trang trước
Trang sau

4 phương pháp giải phương trình vô tỉ cực hay

Phương pháp giải

- biện pháp 1: thổi lên cùng một lũy thừa ở cả hai vế.

+ Phương trình

*

+ Phương trình √A = √B ⇔ A = B.

+ Phương trình A2 = B2 ⇔ |A| = |B| ⇔ A = ±B

- phương pháp 2: Đặt ẩn phụ.

- giải pháp 3: áp dụng biểu thức liên hợp, đánh giá.

Bạn đang xem: Bài tập về phương trình vô tỉ lớp 9 nâng cao

- một trong những phương trình đặc biệt quan trọng có cách giải đơn nhất khác.

Ví dụ minh họa

Ví dụ 1: Sử dụng phương thức bình phương để giải các phương trình:

*

Hướng dẫn giải:

a) √x = 3 (đkxđ: x ≥ 0)

⇔ x = 32 = 9 (t/m)

Vậy phương trình có nghiệm x = 9.

b)

*
(đkxđ: x ≥ -1)

*

⇔ x + 1 = 4

⇔ x = 3 (t/m)

Vậy phương trình có nghiệm x = 3.

c)

*
(đkxđ: x ≥ -3/2 )

⇒ 2x + 3 = x2

⇔ x2 – 2x – 3 = 0

⇔ (x + 1)(x – 3) = 0

⇔ x = -1 hoặc x = 3

Thử lại chỉ có mức giá trị x = 3 thỏa mãn phương trình.

Vậy phương trình gồm nghiệm x = 3.

d)

*
(đkxđ: x ≥ 1).

*

⇒ x - 1 = (x-3)2

⇔ x – 1 = x2 – 6x + 9

⇔ x2 – 7x + 10 = 0

⇔ (x – 2)(x – 5) = 0

⇔ x = 2 hoặc x = 5

Thử lại chỉ có mức giá trị x = 5 thỏa mãn.

Ví dụ 2: Sử dụng phương pháp đặt ẩn phụ để giải những phương trình sau:

*

Hướng dẫn giải:

a) Đặt

*

⇒ x2 + 5x + 3 = t2

⇒ 2x2 + 10x = 2(x2 + 5x) = 2. (t2 - 3) = 2t2 - 6

Khi kia phương trình trở thành:

t + 2t2 - 6 - 15 = 0 ⇔ 2t2 + t – 21 = 0

⇔ (t-3) (2t + 7/2) = 0 ⇔ t = 3 (T/M) hoặc t = -7/2(L).

Với t = 3 thì

*

⇔ x2 + 5x + 3 = 9

⇔ x2 + 5x - 6 = 0

⇔ (x-1) (x+6) = 0

⇔ x = 1 hoặc x = -6

Vậy phương trình bao gồm hai nghiệm: x = 1 với x = -6.

b) Đặt

*
⇒ x = t3.

Khi đó phương trình trở thành: t3 + t – 2 = 0 ⇔ (t – 1)(t2 + t + 2) = 0 ⇔ t = 1 (Vì t2 + t + 2 > 0 với tất cả t).

Với t = 1 ⇒ x = 1.

Vậy phương trình gồm nghiệm x = 1.

c)

*
(Đkxđ: x ≠ 0 cùng x - 1/x ≥ 0 ).

Chia cả nhì vế cho x ta được:

*

Phương trình trở thành: t2 + 2t - 3 = 0

⇔ (t-1)(t+3) = 0 ⇔ t = 1(t/m) hoặc t = -3(l)

Với t = 1 ⇒

*

⇔ x2 – 1 = x

⇔ x2 – x – 1 = 0

⇔ (x-1/2)2 = 5/4

*

Vậy phương trình tất cả hai nghiệm

*

d) Đặt

*

Ta thu được hệ phương trình :

*

⇔ 5x = 5 ⇔ x = 1.

Vậy phương trình bao gồm nghiệm x = 1.

Ví dụ 3: Giải những phương trình sau đây:

*

Hướng dẫn giải:

a) cách thức giải: so với thành nhân tử

*

Vậy phương trình có nghiệm tốt nhất x = 0.

b)

*

Điều kiện khẳng định :

*
⇔ x = 7.

Thay x = 7 vào thấy không vừa lòng phương trình.

Vậy phương trình vô nghiệm.

c) phương pháp giải: Đánh giá bán

*

VT = VP ⇔

*

Vậy phương trình vô nghiệm.

*

+ TH1: Xét

*
⇔ x-1 ≥ 9 ⇔ x ≥ 10 .

Phương trình trở thành:

*

⇔ x – 1 = 81/4 ⇔ x = 85/4 (t.m)

+ TH2: Xét

*
(không tồn tại)

+ TH3: Xét

*
⇔ 5 ≤ x ≤ 10 .

Phương trình trở thành:

*

⇔ 1 = 4 (vô nghiệm)

+ TH4: Xét

*
⇔ x ≤ 5.

Phương trình trở thành:

*

⇔ x - 1 = 1/4 ⇔ x = 5/4 (thỏa mãn).

Vậy phương trình có hai nghiệm x = 5/4 với x = 85/4

Bài tập trắc nghiệm tự luyện

Bài 1: Nghiệm của phương trình

*
là :

A. X = 6 B. X = 3 C. X = 9 D. Vô nghiệm.

Hiển thị đáp án

Bài 2: Phương trình

*
có số nghiệm là:

A. 0B. 1 C. 2D. 3.

Hiển thị đáp án

Đáp án: C

*
(đkxđ: x ≤ -3 hoặc x ≥ -1)

⇔ (x + 1)(x + 3) = 8

⇔ x2 + 4x + 3 = 8

⇔ x2 + 4x – 5 = 0

⇔ x2 + 5x – x – 5 = 0

⇔ (x + 5)(x – 1) = 0

⇔ x = -5 hoặc x = 1 (t/m)

Vậy phương trình bao gồm hai nghiệm


Bài 3: Tổng các nghiệm của phương trình x - 5√x + 6 = 0 là:

A. 5B. 9C. 4D. 13.

Hiển thị đáp án

Đáp án: D

Đkxđ: x ≥ 0.

x - 5√x + 6 = 0

⇔ x - 3√x - 2√x + 6 = 0

⇔ (√x - 3) (√x - 2) = 0

*
(đkxđ: x ≤ -3 hoặc x ≥ -1)

Vậy tổng những nghiệm của phương trình là 13.


Bài 4: Phương trình

*
gồm nghiệm là:

A. X = 4B. X = -3C. X = -3 cùng x = 4 D. Vô nghiệm.

Hiển thị đáp án

Đáp án: A

*
(đkxđ: x ≤ -3 hoặc x ≥ -1)

⇒ 25 – x2 = (x – 1)2

⇔ 25 – x2 = x2 – 2x + 1

⇔ 2x2 – 2x – 24 = 0

⇔ x2 – x – 12 = 0

⇔ x2 – 4x + 3x – 12 = 0

⇔ (x – 4)(x + 3) = 0

⇔ x = 4 hoặc x = -3.

Thử lại chỉ bao gồm x = 4 là nghiệm của phương trình.


Bài 5: Phương trình

*
có số nghiệm là:

A. 0B. 1C. 2D. Vô số.

Hiển thị đáp án

Đáp án: D

*
(đkxđ: x ≤ -3 hoặc x ≥ -1)

⇔ |x-3| = x-3 ⇔ x ≥ 3

Vậy phương trình tất cả nghiệm đúng với mọi x ≥ 3 xuất xắc phương trình bao gồm vô số nghiệm.


Bài 6: Giải những phương trình:

*

Hướng dẫn giải:

a)

*
(đkxđ: x ≥ -3/2 )

*

⇔ 2x + 3 = 1/4

⇔ 2x = -11/4

⇔ x = -11/8

Vậy phương trình bao gồm nghiệm x = -11/8 .

b)

*
(đkxđ: x ≥ 0)

*

⇔ 3x = 144

⇔ x = 48

c)

*
(đkxđ: x ≥ -1)

*

⇔ x + 1 = 25

⇔ x = 24.

Vậy phương trình có nghiệm x = 24.

Bài 7: Giải các phương trình:

*

Hướng dẫn giải:

a)

*

⇔ x2 + x + 1 = 2x2 – 5x + 9

⇔ x2 – 6x + 8 = 0

⇔ x2 – 2x – 4x + 8 = 0

⇔ (x – 2)(x – 4) = 0

⇔ x = 2 hoặc x = 4.

Vậy phương trình gồm hai nghiệm x = 2 hoặc x = 4.

b)

*

⇒ 3x2 + 4x + 1 = (x – 1)2

⇔ 3x2 + 4x + 1 = x2 – 2x + 1

⇔ 2x2 – 6x = 0

⇔ 2x(x – 3) = 0

⇔ x = 0 hoặc x = 3.

Thử lại chỉ tất cả x = 3 là nghiệm của phương trình.

Vậy phương trình bao gồm nghiệm x = 3.

*

⇔ x2 + 5x - 2 = 4

⇔ x2 + 5x - 6 = 0

⇔ (x + 6)(x – 1) = 0

⇔ x = 1 hoặc x = -6

Thử lại cả nhị nghiệm đều thỏa mãn phương trình.

Vậy phương trình có hai nghiệm x = -6 hoặc x = 1.

*

⇒ 4(x+1)(2x+3) = (21-3x)2

⇔ 4(2x2 + 2x + 3x + 3) = 441 – 126x + 9x2

⇔ 8x2 + 20x + 12 = 441 – 126x + 9x2

⇔ x2 – 146x + 429 = 0.

⇔ x2 – 3x – 143x + 429 = 0

⇔ (x – 3)(x – 143) = 0

⇔ x = 3 hoặc x = 143.

Thử lại cả hai đều vừa lòng phương trình

Vậy phương trình gồm hai nghiệm x = 3 và x = 143.

Bài 8: Giải các phương trình:

*

Hướng dẫn giải:

a)

*

Đặt

*

*

+ Th1:

*
⇔ x = 1.

+ Th2:

*
⇔ x = -7.

Vậy phương trình gồm hai nghiệm x = 1 với x = -7.

b)

*
(đkxđ: x ≥ -1)

Đặt

*

⇒ a2 - b2 = (2x+3) - (x+1) = x + 2

⇒ a – b = a2 – b2

⇔ (a – b)(a + b) – (a – b) = 0

⇔ (a – b)(a + b – 1) = 0

⇔ a = b hoặ a + b = 1

+ Th1: a = b ⇒

*

⇔ 2x + 3 = x + 1 ⇔ x = -2 2 – 2x – 3 ≥ 0)

*

Phương trình trở thành: t2 + 3t - 4 = 0

⇔ t2 + 4t – t – 4 = 0

⇔ (t + 4)(t – 1) = 0

⇔ t = -4 (L) hoặc t = 1 (T/M)

*

⇔ x2 – 2x – 3 = 1

⇔ x2 – 2x – 4 = 0

⇔ (x – 1)2 = 5

*

Bài 9: Giải phương trình:

*

Hướng dẫn giải:

*
(1)

Ta có:

*

⇒ VT (1) =

*
≥ 2 + 3 = 5.

Xem thêm: D Are Definition & Meaning, Drug Abuse Resistance Education

VP (1) = 4 – 2x – x2 = 5 – (1 + 2x + x2) = 5 – (x + 1)2 ≤ 5.

VT = VP ⇔ ⇔ x = -1.

Thử lại x = -1 là nghiệm của phương trình.

Vậy phương trình gồm nghiệm x = -1.

Bài 10: Giải phương trình:

*

Hướng dẫn giải:

*
(Đkxđ: x ≥ -1 )

*

+ TH1:

*

Khi kia phương trình trở thành:

*

⇔ x = 3 (t.m)

+ TH2:

*
⇔ x

Mục lục các Chuyên đề Toán lớp 9:

Chuyên đề Đại Số 9Chuyên đề Hình học 9

CHỈ CÒN 250K 1 KHÓA HỌC BẤT KÌ, girbakalim.net HỖ TRỢ DỊCH COVID

Phụ huynh đk mua khóa huấn luyện lớp 9 cho con, được tặng miễn giá tiền khóa ôn thi học tập kì. Cha mẹ hãy đk học thử cho con và được hỗ trợ tư vấn miễn phí. Đăng ký kết ngay!